Regtricks
Release 0.3.6

Aug 03, 2023

Contents:

1 Quickstart

1.1 Loading or creating transformations L e
1.2 Combining and applying transformations L oo
1.3 Working with ImageSpaces (voxel grids) L e

2 FSL integration
2.1 The FSL coordinate system i

3 Contributing

4 regtricks
4.1 regtricks package e e e e e e e e

5 Index

6 Whatis it?

7 Why?
7.1 Transformation, notinterpolation L ..o e e e e e e
7.2 Minimise interpolation L e e

8 How does it work?

8.1 Transformations L e e e e e e
8.2 ImMage Spaces e e e e e e e e e e e e e e e
83 ApPPIYING . . .o e e e e e
84 FSLWrappers o e e e e e e e e e
Python Module Index
Index

[, I SN OS IR)

2

11
11

25

27

29
29
29

31
31
32
32
32

33

35

Regtricks, Release 0.3.6

Tools for manipulating, combining and applying registrations.

Contents: 1

Regtricks, Release 0.3.6

2 Contents:

CHAPTER 1

Quickstart

1.1 Loading or creating transformations

1.1.1 Linear or affine registrations (eg FSL FLIRT)

APl link: regtricks.transforms.linear.Registration

Registrations can be created from a np.array, a path to a text file that numpy can read, or by calling a wrapper for
FLIRT. In all cases, the matrix should be 4x4 and the last row should be 0,0,0,1.

import regtricks as rt

From an array
m = np.eye(4)
r = rt.Registration (m)

From a file that numpy can read (NB if using a FLIRT matrix see below example)
'/a/path/to/file.txt’
rt .Registration(r)

[a]
]

From a FLIRT matrix: provide the original source and reference images

src = 'the_source.nii.gz'

ref = 'the_reference.nii.gz'

p = 'the_flirt_matrix.mat'

r = rt.Registration.from_flirt(p, src=src, ref=ref)

Alternatively, you can run FLIRT directly and return a Reigstration object

src = 'the_source.nii.gz'
ref = 'the_reference.nii.gz'
r = rt.flirt (src, ref, xxkwargs)

Regtricks, Release 0.3.6

1.1.2 Motion corrections (eg FSL MCFLIRT)

APl link: regtricks.transforms.linear.MotionCorrection

Motion corrections are stored as a sequence of Registrations (eg, for a timeseries of 50 volumes, there will be 50
registrations). They can be created from a list of np.array, a path to a text file that shaped (4xN) x 4, a path to a folder
containing only files for the individual arrays, or by calling a wrapper for MCFLIRT.

From a list of arrays
m = [np.eye(4) for in range (10) 1]

mc = rt.MotionCorrection (m)

From a file that numpy can read, shaped (4xN) x 4
p = '/a/path/to/file.txt'
mc = rt.Registration (p)

From a directory containing individual files, named in order
p = 'a/path/to/dir’
mc = rt.MotionCorrection (p)

From a MCFLIRT -mats directory: provide the original src and ref images

Unless using MCFLIRT's -reffile option, the src and the ref are the same!
src = 'the_source.nii.gz'

p = '/path/to/mcflirt.mat’

mc = rt.Registration.from_flirt (p, src=src, ref=src)

Run MCFLIRT directly and return a MotionCorrection object
src = 'the_source.nii.gz'
mc = rt.mcflirt (src, =*xkwargs)

1.1.3 Non-linear registrations (ie FSL FNIRT)

APl link: regtricks.transforms.nonlinear.NonLinearRegistration

For the moment, the only way of loading in NonLinearRegistrations is via FNIRT output (or epi_reg, topup).

From a FNIRT coefficients file, or displacement fields

p = '/a/path/to/fnirt.nii.gz'

src = 'src_image.nii.gz'

ref = 'ref_image.nii.gz'

use intensity correct = True 1if you want to use the Jacobian
nl = rt.NonLinearRegistration.from_fnirt (p, src, ref)

1.2 Combining and applying transformations

Transformations, of any type and in any number, can be combined into a single transformation using rt.chain. The
order of application will be the order the transformations are given. For example, rt.chain(A, B, C) will apply A, then
B, then C.

Prepare some transformations

rt .Registration (some_matrix)

rt.MotionCorrection ([some_matrices])

= rt.NonLinearRegistration.from_fnirt (some_fnirt_file, src, ref)

QW > o
Il

(continues on next page)

4 Chapter 1. Quickstart

Regtricks, Release 0.3.6

(continued from previous page)

Register, motion correct and warp, 1in that order
combined = rt.chain (A, B, C)

Now apply to images
transformed = combined.apply_to_image (some_nifti)

1.3 Working with ImageSpaces (voxel grids)

APl link: regtricks.image space.ImageSpace

Many operations can be achieved by directly manipulating the voxel grid of an image. For example, cropping, extend-
ing, reorienting, or changing the voxel size can be achieved using methods on the ImageSpace object.

spc = rt.ImageSpace (some_nifti)

spc.resize # change dimensions of voxel grid
spc.create_axis_aligned # create a voxel grid
spc.resize_voxels # resize voxels of a grid
spc.make_nifti # make a NIFTI object from ImageSpace
spc.bbox_origin # corner of grid's bounding box
spc.touch # write empty NIFTI for ImageSpace at path
spc.voxel_centres # array of all voxel centre coordinates
spc.world2FSL # transformation from world to FSL coords
spc.world2vox # transformation from world to voxel coords
spc.FSL2world # transformation from FSL to world coords
spc.vox2world # transformation from voxel to world coords
#

spc.transform transform NIFTI sform header directly

1.3. Working with ImageSpaces (voxel grids) 5

Regtricks, Release 0.3.6

6 Chapter 1. Quickstart

CHAPTER 2

FSL integration

Regtricks can handle transformations expressed in world (aka world-mm) or FSL coordinate systems.

2.1 The FSL coordinate system

FSL uses a scaled-mm coordinate system. The origin of the system is always in a corner of the voxel grid and
increments along each axis by the voxel dimensions. For example, if the voxel size is (1,2,3)mm, then voxel (2,2,2)
will map to position (2,4,6) in FSL coordinates. For a more detailed overview of the system, see this link.

Internally, regtricks converts all FSL transformations (both linear and non-linear) into world-world convention for
consistency. Regtricks will perform this conversion automatically on FSL transforms if the appropriate functions are
used:

e Registration.from_flirt () for linear transforms (FSL FLIRT)
e MotionCorrection.from_mcflirt () for motion corrections (FSL MCFLIRT)

* NonLinearRegistration.from fnirt () for non-linear transforms (FSL FNIRT, topup, epi_reg)

Warning: It is impossible to work out what convention a transformation is using just by inspecting it. For
example, a 4x4 linear transformation matrix does not convey any information about world-world or FSL coordinate
systems. The only solution is to know in advance how the transformation was generated (eg, via FSL FLIRT).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/FAQ#What_is_the_format_of_the_matrix_used_by_FLIRT.2C_and_how_does_it_relate_to_the_transformation_parameters.3F

Regtricks, Release 0.3.6

8 Chapter 2. FSL integration

CHAPTER 3

Contributing

Contributions are welcomed! In particular, assistance in integrating transformations generated from the ANTS, ITK
or SPM packages would be welcomed. Please make contact via the GitHub repo.

https://github.com/tomfrankkirk/regtricks

Regtricks, Release 0.3.6

10 Chapter 3. Contributing

CHAPTER 4

regtricks

4.1 regtricks package

4.1.1 Subpackages

regtricks.transforms package

Submodules
regtricks.transforms.linear module

class regtricks.transforms.linear.MotionCorrection (mats)
Bases: regtricks.transforms.linear.Registration

A sequence of Registration objects, one for each volume in a timeseries.

Parameters mats —a path to a directory containing transformation matrices, in name order (all files
will be loaded), or a list of individual filenames, or a list of np.arrays

from flirt (*args)
Load an affine (4x4) transformation between two images directly from FLIRT’s -omat output.

Parameters
* src2ref (Pathlike, np.ndarray) - path to text-like file to load or np.ndarray
¢ src — the source of the transform
* ref — the reference (or target) of the transform

Returns Registration object

classmethod from mcflirt (mats, src, ref)
Load a MotionCorrection object directly from MCFLIRT’s -omat directory. Note that for within-timeseries
registration, the src and ref arguments should take the same value.

11

Regtricks, Release 0.3.6

Parameters

* mats — a path to a directory containing transformation matrices, in name order (all files
will be loaded), or a list of individual filenames, or a list of np.arrays

* src - source of the transforms (ie, the image being corrected)
* ref — the target of the transforms (normally same as src)
Returns MotionCorrection

classmethod from registration (reg, length)
Produce a MotionCorrection by repeating a Registration object n times (eg, 10 copies of a single transform)

classmethod identity (length)

ref2src
List of ref to src transformation matrices

resolve (src, ref, at_idx)
Return a coordinate array and scale factor that maps reference voxels into source voxels, including the
transform. Uses cached values, if available.

Parameters
e src (ImageSpace) —in which data currently exists and interpolation will be performed
* ref (ImageSpace) — in which data needs to be expressed
* at_idx (int) - index number within series of transforms to apply
Returns
(np.ndarray, 1) coordinates on which to interpolate and identity scale factor

save_£sl (outdir, src, ref, prefix="MAT_’)
Save in FSL convention as textfiles at path

save_txt (outdir, prefix="MAT_’)
Save individual transformation matrices in text format in outdir. Matrices will be named prefix_001...

Parameters
* outdir — directory in which to save
* src — (optional) path to image, or ImageSpace, source space of transformation
» ref — as above, for reference space of transformation
e convention — “world” or “fsl”, if fsl then src/ref must be given
» prefix — prefix for naming each matrix

src2ref
List of src to ref transformation matrices

to_£sl (src, ref)
Transformation matrices in FSL terms

transforms
List of Registration objects representing each volume of transform

class regtricks.transforms.linear.Registration (src2ref)
Bases: regtricks.transforms.transform.Transform

Affine (4x4) transformation between two images.

Parameters src2ref (Pathlike, np.ndarray) - path to text-like file to load or np.ndarray

12 Chapter 4. regtricks

Regtricks, Release 0.3.6

classmethod from flirt (src2ref, src, ref)
Load an affine (4x4) transformation between two images directly from FLIRT’s -omat output.

Parameters
e src2ref (Pathlike, np.ndarray)— path to text-like file to load or np.ndarray
* src — the source of the transform
» ref — the reference (or target) of the transform
Returns Registration object
classmethod identity ()

inverse ()
Self inverse

prepare_cache (ref)
Cache re-useable data before interpolate_and_scale. Just the voxel index grid of the reference space is
stored

ref2src

resolve (src, ref, *unused)
Return a coordinate array and scale factor that maps reference voxels into source voxels, including the
transform. Uses cached values, if available.

Parameters
* src (ImageSpace) —in which data currently exists and interpolation will be performed
* ref (ImageSpace) — in which data needs to be expressed

Returns
(np.ndarray, 1) coordinates on which to interpolate and identity scale factor

save_£sl (path, src, ref)
Save in FSL convention as textfile at path

save_txt (path)
Save as textfile at path

src2ref

to_flirt (src, ref)
Alias for self.to_fsl()

to_£s1 (src, ref)
Return transformation in FSL convention, for given src and ref, as np.array. This will be 3D in the case of
MotionCorrections

regtricks.transforms.nonlinear module

class regtricks.transforms.nonlinear.NonLinearMotionCorrection (warp, premat,
postmat, inten-
sity_correct=0,
con-

strain_jac=False)
Bases: regtricks.transforms.nonlinear.NonLinearRegistration

Only to be created by multiplication of other classes. Don’t go here!

4.1. regtricks package 13

Regtricks, Release 0.3.6

Parameters
» warp — FNIRTCoefficients object or NonLinearProduct
* src — src of transform
* ref — ref of transform
* premat — list of Registration objects
* postmat - list of Registration objects

* intensity correct —int (0/1/2/3), whether to apply intensity correction, and at what
stage in the case of NLPs

* constrain_jac (bool/array-1ike) — constrain Jacobian for intensity correction
(default False). If True, limits of (0.01, 100) will be used, or explicit limits can be given as
(min, max)

resolve (src, ref, at_idx)
Return a coordinate array and scale factor that maps reference voxels into source voxels, including the
transform. Uses cached values, if available. A scale factor of 1 will be returned if no intensity correction
was requested.

Parameters
* src (ImageSpace)—in which data currently exists and interpolation will be performed
* ref (ImageSpace) — in which data needs to be expressed
* at_idx (int) - index number within MC series of transforms to apply

Returns

(np.ndarray, np.ndarray/int) coordinates on which to interpolate, scaling factor to ap-
ply after interpolation

class regtricks.transforms.nonlinear.NonLinearRegistration
Bases: regtricks.transforms.transform. Transform

Non linear registration transformation. Currently only FSL FNIRT warps are supported. Note that the —premat
and —postmat used by FSL command line tools should not be supplied here. Instead, defined them as Registration
objects and use chain() to concatenate them with NLRs.

classmethod from_fnirt (coefficients, src, ref, intensity_correct=False, constrain_jac=False)
FNIRT non-linear registration from a coefficients file. If a pre-warp and post-warp transformation need
to be applied, create these as separate Registration objects and combine them via chain, ie, combined =
chain(pre, non-linear, post)

Parameters
e coefficients (Pathlike)— FNIRT coefficient field

e src (Pathlike, ImageSpace) — source image used for generating FNIRT coeffi-
cients

* ref (Pathlike, ImageSpace) — reference image used for generating FNIRT coef-
ficients

* intensity_correct - intensity correct output via the Jacobian determinant of this
warp (when self.apply_to*() is called)

* constrain_jac (bool/array-1ike) — constrain Jacobian for intensity correction
(default False). If True, limits of (0.01, 100) will be used, or explicit limits can be given
as (min, max)

14 Chapter 4. regtricks

Regtricks, Release 0.3.6

Returns NonLinearRegistration object
intensity_correct

inverse ()
Iverse warpfield, via FSL invwarp

postmat_to_£sl (src, ref)
Return list of postmats in FSL convention

premat_to_£sl (src, ref)
Return list of premats in FSL convention

prepare_cache (ref)
Pre-compute and store the displacement field, including any postmats. This is because premats can be
applied after calculating the field, but postmats must be included as part of that calculation. Note that
get_cache_value() return None, signifying that the field could not be cached (which implies a NLMC)

Parameters ref (ImageSapce) — the space in towards which the transform will be applied

resolve (src, ref, *unused)
Return a coordinate array and scale factor that maps reference voxels into source voxels, including the
transform. Uses cached values, if available. A scale factor of 1 will be returned if no intensity correction
was requested.

Parameters
* src (ImageSpace) — in which data currently exists and interpolation will be performed
* ref (ImageSpace) — in which data needs to be expressed

Returns

(np.ndarray, np.ndarray/int) coordinates on which to interpolate, scaling factor to ap-
ply after interpolation

regtricks.transforms.transform module

class regtricks.transforms.transform.Transform
Bases: object

Base object for all transformations. This should never actually be instantiated but is instead used to provide
common functions.

_cache
use for storing resolved displacement fields and sharing amongst workers in multiprocessing pool

islinear
Registrations or MotionCorrections

isnonlinear
NonLinearRegistrations or NLMCs

apply_to_array (data, src, ref, order=3, superfactor=True, mask=True, cval=0.0, cores=2,

*kkwargs)
Applies transformation to data array. If a registration is applied to 4D data, the same transformation will
be applied to all volumes in the series.

Parameters
* data (array)—-3D or 4D array.

e src(Pathlike/NII/MGZ/FSLImage/ImageSpace)— current space of data

4.1. regtricks package 15

Regtricks, Release 0.3.6

e ref (Pathlike/NII/MGZ/FSLImage/ImageSpace) — target space for data
* order (int)— 0 for NN, 1 for linear, 2-5 for splines.

* superfactor (bool/int/iterable)— default True for any order > 0, (chosen au-
tomatically); intermediate super-sampling (replicates applywarp -super), enabled by de-
fault when resampling from high to low resolution. Set as False to disable, or set an
int/iterable to manually specify level for each image dimension.

* mask (bool) — for order > 1, mask output to remove negligible values due to spline
artefact

* cval (float) —fill value for background, used for correcting spline artefact
e cores (int)— CPU cores to use for 4D data
* xxkwargs — passed on to scipy.ndimage.map_coordinates

Returns (np.array) transformed image data in ref voxel grid.

apply_to_image (src, ref, order=3, superfactor=True, mask=True, cval=0.0, cores=2, **kwargs)
Applies transformation to data array. If a registration is applied to 4D data, the same transformation will
be applied to all volumes in the series.

Parameters
e src(Pathlike/NII/MGZ/FSLImage)— image to transform
e ref (Pathlike/NII/MGZ/FSLImage/ImageSpace) — target space for data
* order (int)— 0 for NN, 1 for linear, 2-5 for splines.

* superfactor (bool/int/iterable)— default True for any order > 0, (chosen au-
tomatically); intermediate super-sampling (replicates applywarp -super), enabled by de-
fault when resampling from high to low resolution. Set as False to disable, or set an
int/iterable to manually specify level for each image dimension.

* mask (bool) — for order > 1, mask output to remove negligible values due to spline
artefact

* cval (float) —fill value for background, used for correcting spline artefact
e cores (int)— CPU cores to use for 4D data
* xxkwargs — passed on to scipy.ndimage.map_coordinates
Returns (np.array) transformed image data in ref voxel grid.
cache
is_linear
is nonlinear
reset_cache ()

save (path)
Save transformation at path in X5 format (experimental)

16 Chapter 4. regtricks

Regtricks, Release 0.3.6

Module contents

4.1.2 Submodules

4.1.3 regtricks.application_helpers module
regtricks.application_helpers.aff_trans (matrix, points)
Affine transform a 3D set of points

regtricks.application_helpers.despatch (data, transform, src_spc, ref_spc, cores, **kwargs)
Apply a transform to an array of data, mapping from source space to reference. Essentially this is an extended
wrapper for Scipy map_coordinates.

Parameters

* data (array) — np.array of data (3D or 4D)

* transform (Transformation)— between source and reference space

* src_spc (ImageSpace) —in which data currently lies

* ref_ spc (ImageSpace)—towards which data will be transformed

e cores (int)—number of cores to use (for 4D data)

* xxkwargs — passed onto scipy.ndimage.interpolate.map_coordinates
Returns (np.array) transformed data

regtricks.application_helpers.interpolate_and_scale (idx, data, transform, src_spc,
ref_spc, **kwargs)
Used for partial function application to share interpolation jobs amongst workers of a mp.Pool(). Interpolate data
onto the coordinates given in the tuple coords_scale, and multiply the output by the other value in coords_scale.
Reshape the output to size out_size.

Parameters
* data (np.ndarray) - 3D, image data

* coords_scale (np.ndarray, np.ndarray) — (N,3) coordinates to interpolate
onto (indices into data array), value by which to scale output (int or another np.ndarray
for intensity correction)

* out_size (np.ndarray) - 3-vector, shape of output
* xxkwargs — passed onto scipy map_coordinates
Returns (np.ndarray), sized as out_size, interpolated output
regtricks.application_helpers.src_load_ helper (src)

regtricks.application_helpers.sum_array_blocks (array, factor)
Sum sub-arrays of a larger array, each of which is sized according to factor. The array is split into smaller
subarrays of size given by factor, each of which is summed, and the results returned in a new array, shrunk
accordingly.

Parameters
* array — n-dimensional array of data to sum
» factor —n-length tuple, size of sub-arrays to sum over

Returns

4.1. regtricks package 17

Regtricks, Release 0.3.6

array of size array.shape/factor, each element containing the sum of the corresponding
subarray in the input

4.1.4 regtricks.fnirt_coefficients module

class regtricks.fnirt_coefficients.FNIRTCoefficients (coeffs, src, ref, con-
strain_jac=False)
Bases: object

Private encapsulation of FNIRT warp field. Only to be used from within a NonLinearTransformation
Parameters
* nibabel object or path to coefficients file (coeffs;)-
* src — Pathlike or ImageSpace, path to original source for transform
» ref — Pathlike or ImageSpace, path to original reference for transform

* constrain_jac (bool/tuple) — constrain the Jacobian of the transform (default
False). If True, default limits of (0.01, 100) are used, otherwise the limits (min,max) can be
passed directly.

get_cache_value (ref, postmat)
Return cacheable values, if possible, else return None.

When can we cache? If there are only one midmat/postmat, or all of the midmats and postmats are actually
the same (due to series expansion required to match the size of the premats), then we can compute and
cache displacement field as it will be the same for all workers. If not, then we cannot cache and all workes
must compute a new displacement field for each mid/post pair

get_displacements (ref, postmat, at_idx=None)
Resolve displacements of transform within reference space with postmat.

Parameters
* ref (ImageSpace) — space within which to resolve displacements
* postmat (Registration/MotionCorrection)— post-warp transform

e at_idx (int) — index number within postmat to use (for MC). Default None, which
corresponds to Registration postmats (not MC).

Returns

Nx3 array of absolute positions of reference voxels in the grid of the warp’s source
space, in FSL coordinates

Return type (array)
jmax
jmin
class regtricks.fnirt_coefficients.NonLinearProduct (first, first_post, second_pre, sec-

ond)
Bases: object

Lazy evaluation of the combination of two non-linear warps. The two warps are stored separately as FNIRTCo-
efficients objects, and combined into a single field via convertwarp when resolve() is called.

Parameters

e first (FNIRTCoefficients)— first warp

18 Chapter 4. regtricks

Regtricks, Release 0.3.6

» first_post (Registration/MotionCorrection)— after first warp transform

* second_pre (Registration/MotionCorrection) — before second warp trans-
form

* second (FNIRTCoefficients)—second warp

get_cache_value (ref, postmat)
Return cacheable values, if possible, else return None.

When can we cache? If there are only one midmat/postmat, or all of the midmats and postmats are actually
the same (due to series expansion required to match the size of the premats), then we can compute and
cache displacement field as it will be the same for all workers. If not, then we cannot cache and all workes
must compute a new displacement field for each mid/post pair

get_displacements (ref, postmat, at_idx=None)
Resolve displacements of transform within reference space with postmat.

Parameters
* ref (ImageSpace) — space within which to resolve displacements
* postmat (Registration/MotionCorrection)— post-warp transform

e at_idx (int) — index number within mid/postmat to use (for MC). Default is None,
which corresponds to Registration mid/postmats.

Returns

Nx3 array of absolute positions of reference voxels in the grid of the warp’s source
space, in FSL coordinates

Return type (array)
jmax
jmin
regtricks.fnirt_coefficients.det_jacobian (vec_field, vox_size)

Calculate determinant of Jacobian for vector field, with homogenous spacing along each axis. Second order
central differences are used to estimate partial derivatives.

Parameters

* vec_field (np.ndarray) - sized XYZ3, where the last dimension corresponds to dis-
placements along the x,y,z axis respectively

* vox_size (np.ndarray) — array sized 3, step size along each spatial axis
Returns

(np.ndarray), sized XYZ, values of the determinant of the Jacobian matrix evaluated at
each point within the array

regtricks.fnirt_coefficients.get_£field (coeffl, ref, coeff2=None, mid=None, post=None,

Jjmin=None, jmax=None)
Resolve coefficients into displacement field via convertwarp.

Parameters
* coeffl (FNIRTCoefficients) — first warp
* ref (ImageSpace) — reference grid for output
* coeff2 (FNIRTCoefficients)— optional, second warp

* mid (np.ndarray) — optional, between-warp affine matrix

4.1. regtricks package 19

Regtricks, Release 0.3.6

* post (np.ndarray) — optional, after-warp affine matrix
Returns

np.ndarray, shape Nx3, arranged by voxel index down the rows and XYZ in columns.
Row M in the array gives the position of the reference voxel with linear index M in the
source voxel grid of warpl, in FSL coordinates.

4.1.5 regtricks.image_space module

ImageSpace: image matrix, inc dimensions, voxel size, vox2world matrix and inverse, of an image. Used for resam-
pling operations between different spaces and also for saving images into said space (eg, save PV estimates into the
space of an image)

class regtricks.image_space.ImageSpace (img)
Bases: object

Voxel grid of an image, ignoring actual image data.
Parameters img — Pathlike to image, nibabel Nifti/MGH or FSL Image object

size
array of voxel counts in each dimension

vox_size
array of voxel size in each dimension

vox2world
4x4 affine to transform voxel coords -> world

world2vox
inverse of above

FSL2vox
Transformation from FSL scaled coordinates to voxels

FSL2world
Transformation from FSL scaled coordinates to world

bbox_origin
Origin of the image’s bounding box, referenced to first voxel’s corner, not center (ie, -0.5, -0.5, -0.5)

classmethod create_axis_aligned (bbox_corner, size, vox_size)
Create an ImageSpace from bounding box location and voxel size. Note that the voxels will be axis-aligned
(no rotation).

Parameters

* bbox_corner — 3-vector, location of the furthest corner of the bounding box, at which
the corner of voxel 0 0 0 will lie.

* size — 3-vector, number of voxels in each spatial dimension

e vox_size — 3-vector, size of voxel in each dimension
Returns ImageSpace object

file name

fov_size
FoV associated with image, in mm

20 Chapter 4. regtricks

Regtricks, Release 0.3.6

ijk_grid (indexing="ij’)
Return a 4D matrix of voxel indices for this space. Default indexing is ‘ij’ (matrix convention), Xy’ can
also be used - see np.meshgrid for more info.

Returns

4D array, size of this space in the first three dimensions, and stacked I,J,K in the fourth
dimension

make_nifti (data)
Construct nibabel Nifti for this voxel grid with data

classmethod manual (vox2world, size)
Manual constructor

n_vox
Number of voxels in grid

resize (start, new_size)
Resize the FoV of this space, maintaining axis alignment and voxel size. Can be used to both crop and
expand the grid. For example, to expand the grid sized X,Y,Z by 10 voxels split equally both before and
after each dimension, use (-5,5,5) and (X+5, Y+5, Z+5)

Parameters

* start - sequence of 3 ints, voxel indices by which to shift first voxel (0,0,0 is origin,
negative values can be used to expand and positive values to crop)

* new_size - sequence of 3 ints, length in voxels for each dimension, starting from the
new origin

Returns new ImageSpace object

resize_voxels (factor, mode="floor’)
Resize voxels of this grid.

Parameters

» factor - ecither a single value, or 3 values in array-like form, by which to multiply voxel
size in each dimension

* mode — “floor” or “ceil”, whether to round the grid size up or down if factor does not
divide perfectly into the current size

Returns new ImageSpace object

save_image (data, path)
Save 3D or 4D data array at path using this image’s voxel grid

classmethod save_like (ref, data, path)
Save data into the space of an existing image

Parameters
* ref — path to image defining space to use
* data — ndarray (of appropriate dimensions)
* path — path to write to

touch (path, dtype=<class 'float’>)
Save empty volume at path

4.1.

regtricks package 21

Regtricks, Release 0.3.6

transform(reg)
Apply affine transformation to voxel grid of this space. If the reg is a np.array, it must be in world-world
terms, and if it is a Registration object, the world-world transform will be used automatically.

Parameters reg — either a 4x4 np.array (in world-world terms) or Registration
Returns a transformed copy of this image space

vox2FSL
Transformation between voxels and FSL coordinates (scaled mm). FLIRT matrices are given in (src FSL)
-> (ref FSL) terms. See: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/FAQ

VvoOX_size
Voxel size of image

voxel_centres (indexing="ij’)
Return a 4D matrix of voxel centre coordinates for this space. Default indexing is as for ImageS-
pace.ijk_grid(), which is ‘ij” matrix convention. See np.meshgrid for more info.

Returns

4D array, size of this space in the first three dimensions, and stacked I,J,K in the fourth
dimension.

world2FSL
Transformation from world coordinates to FSL scaled

world2vox
World coordinates to voxels

4.1.6 regtricks.multiplication module

Functions for combining Transformations

regtricks.multiplication.cast_potential_array (arr)
Helper to convert 4x4 arrays to Registrations if not already

regtricks.multiplication.chain (*args)
Concatenate a series of transformations (Registration, MotionCorrection, NonLinearRegistration). Note that in-
tensity correction should be enabled when creating a NonLinearRegistration object using intensity_correct=True
in the constructor prior to using chain().

Parameters xargs — Transform objects, given in the order that they need to be applied (eg, for A
-> B -> C, give them in that order and they will be multipliedas C @ B @ A)

Returns Transform object representing the complete transformation

regtricks.multiplication.get_highest_type (first, second)
When combining two arbitrary transforms, the output will be of the same type as the “highest” of the two
arguments (this is the “type promotion’). This function returns the highest type of two input objects, according
to:

Registration LOWEST MotionCorrection NonLinearReigstration NonLinearMotionCorrection HIGHEST

Once the higest type is known, the actual multiplication is handled by that class’ invididual method, as below in
this submodule

Parameters
e first (transformation)— order doesn’t matter

e second (transformation)— order doesn’t matter

22 Chapter 4. regtricks

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/FAQ

Regtricks, Release 0.3.6

Returns type object of the highest class

regtricks.multiplication.moco (lhs, rhs)
Combine either a Registration and MoCo, or two MoCos. Return a MotionCorrection.

regtricks.multiplication.nonlinearmoco (lhs, rhs)
Combine either a Registration and NLMC, a MoCo and NLMC, a NLR and NLMC, or two NLMCs. Note at
most 2 non-linear transforms can be combined. Return a NonLinearMotionCorrection.

regtricks.multiplication.nonlinearreg (/hs, rhs)
Combine either a Registration and NLR, a MoCo and NLR, or two NLRs. Note at most 2 non-linear transforms
can be combined. Return a NonLinearRegistration.

regtricks.multiplication.registration (/hs, rhs)
Combine two Registrations, return a Registration.

4.1.7 regtricks.wrappers module

regtricks.wrappers.flirt (src, ref, **kwargs)
FLIRT registration wrapper. If any of the output arguments are given (out/o and omat), FLIRT will run in
command line mode and save the outputs at those paths, and nothing will be returned. If none of the outputs are
given, no outputs will be saved and a Registration will be returned. See fsl.wrappers.flirt.flirt for full docs.

Parameters

* src - image to register

* ref — target to register on to

* out/o — where to save output

* omat — save registration matrix

* xxkwargs — as for FLIRT
Returns Registration object

regtricks.wrappers. fnirt (src, ref, **kwargs)

regtricks.wrappers.mcflirt (src, refvol=-1, **kwargs)
MCFLIRT motion correction wrapper. If an output path is given, MCFLIRT will run in command line mode,
save the output and return None. If no output path is given, a MotionCorrection and Nibabel image for the frame
used as the reference will be returned. See fsl.wrappers.flirt.mcflirt for full docs.

Parameters
* src — (Pathlike) image to register
* refvol —target frame to register on to, default is N/2
* out — where to save output
* xxkwargs — as for MCFLIRT

Returns MotionCorrection object

4.1.8 regtricks.x5_interface module

X35 interface for regtricks. With thanks to Paul McCarthy; this is almost a direct copy of his fslpy.transform.x5 module

4.1. regtricks package 23

Regtricks, Release 0.3.6

exception regtricks.x5_interface.X5Error
Bases: Exception

regtricks.x5_interface.check_is_x5 (path)

regtricks.x5_interface.load_manager (path)
Load transformation objects from X5 format

regtricks.x5_interface.read_affine (group)
Load a single or stack of (4,4) arrays to X5 group

regtricks.x5_interface.read imagespace (group)
Read ImageSpace properties (size, voxel size, vox2world) into X5 format, and return ImageSpace object

regtricks.x5_interface.read_metadata (group)
Read X5 format metadata

regtricks.x5_interface.save_manager (reg, path)
Save Registration or MotionCorrection objects in X5 format

regtricks.x5_interface.write_affine (group, matrix, inverse)
Write a single or stack of (4,4) arrays to X5 group

regtricks.x5_interface.write_imagespace (group, spc)
Write ImageSpace properties (size, voxel size, vox2world) into X5 format

regtricks.x5_interface.write_metadata (group)
Write X5 format metadata

4.1.9 Module contents

24 Chapter 4. regtricks

CHAPTER B

Index

25

Regtricks, Release 0.3.6

26

Chapter 5. Index

CHAPTER O

What is it?

Regtricks is a python library that simplifies the process of working with and applying image registrations. It is not
a replacement for image registration tools (eg FSL FLIRT), but it does make working with the output of these tools
eaiser. It offers:

an object oriented interface: Registration, MotionCorrection, NonLinearRegistration
easy combining of multiple transforms via chain ()
one interpolation step for image data, regardless of the number of transforms that need to be applied

separation between transformation and interpolation: generate a registration using one pair of images, then
apply it to another, even if the voxel grids don’t match

full support for FSL tools FLIRT, MCFLIRT, FNIRT

intensity correction via the Jacobian determinant for Nonl.inearRegistration
multi-core support for 4D images

lazy evaluation avoids locking up your process until its time to actually transform an image
full control over interpolation, including order of spline interpolant and pre-filtering

an ImageSpace class for manipulating voxel grids directly (eg cropping and supersampling)

27

Regtricks, Release 0.3.6

28

Chapter 6. What is it?

CHAPTER /

Why?

7.1 Transformation, not interpolation

Many registration tools (eg FSL) combine image transformation and interpolation into a single step, although they are
not the same thing.

A transformation moves an image so that it is aligned with some other image (eg, functional with structural). An
interpolation redraws an image from one voxel grid onto another (eg, functional to structural resolution).

What if you want to do one, but not the other? For example, transform a functional image into alignment with
a structural, but leave the result in functional resolution? Regtricks separates the two operations from each other,
allowing you to apply whatever transformations you want, and then choose which voxel grid in which to place the
results.

7.2 Minimise interpolation

Regtricks allows multiple transformations to be combined with a single interpolation step. This preserves image
quality by minimising interpolation-induced blurring.

29

Regtricks, Release 0.3.6

raw functional structural MNI 152 2mm

motion J ‘
correction | . . non-linear
f registration registration

—— [

[
2
o
=
2
o

Motion-corrected, Motion-corrected, Motion-corrected,
at functional aligned with structural, aligned with MNI 152,
resolution at functional resolution at functional resolution

Fig. 1: Example usage of regtricks, showing the difference between transformation and interpolation. From the images
in the top row, three transformations are generated: a motion correction, a registration, and a non-linear registration.
On the bottom row, the transformations are applied, but the result is left in the space of the original input (functional
resolution).

30 Chapter 7. Why?

CHAPTER 8

How does it work?

8.1 Transformations

The subclasses of Transformation represent all the different types of registration:
* Registration: alinear affine registration (4x4 matrix)
* MotionCorrection: alinear motion correction (series of 4x4 matrices)
* NonLinearRegistration: anon-linear registration (aka warp, only FSL FNIRT currently supported)

All of these objects can be combined together, either via @ multiplication (NB reverse order, eg BC @ AB = AC), or
much simpler: the chain () method! For example, if you want to motion correct a functional image and register it
onto a standard space in a single step:

import regtricks as rt

Load MCFLIRT, FLIRT and FNIRT transformations for each step

func_mc = rt.MotionCorrection.from mcflirt ('func_mcf.mat', src='func.nii.gz', ref=
— 'func.nii.gz")

func2struct = rt.Registration.from flirt ('func2struct.mat', src='func.nii.gz', ref=
—'struct.nii.gz'")

struct2mni = rt.NonLinearRegistration.from_fnirt ('struct2mni_coeff.nii.gz', src=
—'struct.nii.gz', ref="'mni.nii.gz')

Combine them into a single transformation that maps functional to MNI
func2mni_mc = rt.chain (func_mc, func2struct, struct2mni)

Apply them to get a nibabel NIFTI object back:
func_mni = func2mni_mc.apply_to_image ('func.nii.gz', ref='mni.nii.gz'")
nibabel.save (func_mni, 'func_mni.nii.gz")

Regtricks features type promotion. For example, if you chain a Registration and a MotionCorrection
together, the result is a new Mot ionCorrect ion. This applies for all transform classes and requires no user action.
All transform classes have an inverse () method that returns the self-inverse as a new object.

31

Regtricks, Release 0.3.6

8.2 Image spaces

All registration operations in regtricks are applied in two stages:
1. apply a transformation to move the input image
2. write out the result on some voxel grid

Although there is only a single way of doing step (1), there are many ways of doing step (2): do you want the result in
the space of the input image, in the space of the target image, or in some other space entirely (eg MNI)? This is where
the TmageSpace class comes in.

The TmageSpace class is used to represent the voxel grid of an image (ie, field of view, voxel size, position in world
space). Although you probably won’t need to interact with it directly, its handy to know why it exists. TmageSpace
are used to denote where image data has come from and where it is going fo. Almost all regtricks functions or classes
accept a src and ref argument which represent the from and to respectively.

8.3 Applying

Transformations are applied with the apply_to_image (src, ref) method, where src is the input image and
ref is the space in which to place the output (which could be the same as src). This function also accepts numerous
extra arguments, for example:

* superfactor: intermediate super-sampling factor (similar to FSL applywarp)
* order: order of spline interpolant, 1-5, default 3

e cores: multi-core processing to speed up 4D images

* xxkwargs: any args accepted by map_coordinates ()

Note that intensity correction via Jacobian determinants for non-linear transforms can be applied, but it must be set
when creating a non-linear transform object, not when calling apply_to_image (). For example:

epi_distcorr = NonLinearRegistration(x, intensity_correct=True) .

Scipy’s map_coordinates () is used to perform interpolation; this is a powerful tool that accepts many extra
arguments (passed via « xkwargs).

8.4 FSL Wrappers

Wrappers for the standard FSL registration functions are available in regtricks.wrappers. These behave
slightly differently to normal commandline tools in that they return transformation objects. For example: a_flirt
= rt.wrappers.flirt (src, ref) will run FLIRT and output a Registration object directly.

32 Chapter 8. How does it work?

Python Module Index

r

regtricks,

regtricks

regtricks.
regtricks.
regtricks.
.transforms, 17

.transforms.linear, 11

regtricks
regtricks

regtricks.
.transforms.transform, 15
.wrappers, 23
.x5_interface, 23

regtricks
regtricks
regtricks

24

.application_helpers, 17

fnirt_coefficients, 18
image_space, 20
multiplication, 22

transforms.nonlinear, 13

33

Regtricks, Release 0.3.6

34

Python Module Index

Index

Symbols

_cache (regtricks.transforms.transform.Transform at-
tribute), 15

A

aff_trans () (in
regtricks.application_helpers), 17

module

apply_to_array () (regtricks.transforms.transform. Trar%sfo rm

method), 15

apply_to_image () (regtricks.transforms.transform. Trar%sfo rm

method), 16

B

bbox_origin (regtricks.image_space.ImageSpace at-
tribute), 20

C

cache (regtricks.transforms.transform. Transform

attribute), 16

cast_potential_array ()
regtricks.multiplication), 22

chain () (in module regtricks.multiplication), 22

check_is_x5 () (in module regtricks.x5_interface), 24

create_axis_aligned()
(regtricks.image_space.ImageSpace
method), 20

(in module

class

D

despatch () (in module regtricks.application_helpers),
17

det_jacobian () (in
regtricks.fnirt_coefficients), 19

module

F

file_name (regtricks.image_space.ImageSpace at-
tribute), 20

flirt () (in module regtricks.wrappers), 23

fnirt () (in module regtricks.wrappers), 23

FNIRTCoefficients (class in
regtricks.fnirt_coefficients), 18

fov_size (regtricks.image_space.ImageSpace at-
tribute), 20

from_flirt () (regtricks.transforms.linear.MotionCorrection
method), 11

from_flirt () (regtricks.transforms.linear.Registration

class method), 12

rom_fnirt () (regtricks.transforms.nonlinear.NonLinearRegistration

class method), 14

rom_mcflirt () (regtricks.transforms.linear.MotionCorrection

class method), 11

from_registration()
(regtricks.transforms.linear. MotionCorrection
class method), 12

FSL2vox (regtricks.image_space.ImageSpace attribute),
20

FSL2world (regtricks.image_space.ImageSpace at-
tribute), 20

G

get_cache_value ()
(regtricks.fnirt_coefficients. FNIRT Coefficients
method), 18

get_cache_value ()
(regtricks.fnirt_coefficients.NonLinearProduct
method), 19

get_displacements ()
(regtricks.fnirt_coefficients. FNIRT Coefficients
method), 18

get_displacements ()
(regtricks.fnirt_coefficients.NonLinearProduct
method), 19

get_field () (in module regtricks.fnirt_coefficients),
19

get_highest_type () (in module
regtricks.multiplication), 22

identity () (regtricks.transforms.linearMotionCorrection

35

Regtricks, Release 0.3.6

class method), 12

identity () (regtricks.transforms.linear.Registration
class method), 13

ijk_grid() (regtricks.image_space.ImageSpace
method), 20

ImageSpace (class in regtricks.image_space), 20

intensity_correct

NonLinearProduct

NonLinearRegistration

(class in
regtricks.fnirt_coefficients), 18

nonlinearreqg () (in module regtricks.multiplication),
23

(class in

regtricks.transforms.nonlinear), 14

(regtricks.transforms. nonlinear.NonLinearRegistr(Eon

attribute), 15
interpolate_and_scale() (in
regtricks.application_helpers), 17
inverse () (regtricks.transforms.linear.Registration
method), 13

module

postmat_to_£sl () (regtricks.transforms.nonlinearNonLinearRegistrai

method), 15

premat_to_fsl () (regtricks.transforms.nonlinear.NonLinearRegistrati

method), 15

prepare_cache () (regtricks.transforms.linear.Registration

inverse () (regtricks.transforms.nonlinear.NonLinearRegistration method), 13

method), 15
is_linear (regtricks.transforms.transform.Transform
attribute), 16

prepare_cache () (regtricks.transforms.nonlinear.NonLinearRegistrati

method), 15

is_nonlinear (regtricks.transforms.transform. TransfornR

attribute), 16
islinear (regtricks.transforms.transform.Transform
attribute), 15

isnonlinear (regtricks.transforms.transform.Transform

attribute), 15

J

jmax (regtricks.fnirt_coefficients. FNIRT Coefficients at-
tribute), 18

(regtricks.fnirt_coefficients.NonLinearProduct at-
tribute), 19

(regtricks.fnirt_coefficients. FNIRT Coefficients at-
tribute), 18

(regtricks.fnirt_coefficients.NonLinearProduct at-
tribute), 19

Jjmax
Jjmin

Jjmin

read_affine () (in module regtricks.x5_interface), 24

read_imagespace () (in module
regtricks.x5_interface), 24

read_metadata () (in module regtricks.x5_interface),
24

ref2src (regtricks.transforms.linear MotionCorrection
attribute), 12

ref2src (regtricks.transforms.linear.Registration at-
tribute), 13

Registration (class in regtricks.transforms.linear),
12

registration () (in module regtricks.multiplication),
23

regtricks (module), 24

regtricks.application_helpers (module), 17

L regtricks.fnirt_coefficients (module), 18
regtricks.image_space (module), 20
load_manager () (in module regtricks.x5_interface), regtricks.multiplication (module),?22
24 regtricks.transforms (module), 17
M regtricks.transforms.linear (module), 11
regtricks.transforms.nonlinear (module),
make_nifti() (regtricks.image_space.lmageSpace 13
method), 21 regtricks.transforms.transform (module),
manual () (regtricks.image_space.ImageSpace class 15
method), 21 regtricks.wrappers (module), 23
mcflirt () (in module regtricks.wrappers), 23 regtricks.x5_interface (module), 23
moco () (in module regtricks.multiplication), 23 reset_cache () (regtricks.transforms.transform.Transform
MotionCorrection (class in method), 16
regtricks.transforms.linear), 11 resize () (regtricks.image_space.ImageSpace
method), 21
N resize_voxels () (regtricks.image_space.ImageSpace
n_vox (regtricks.image_space.ImageSpace attribute), 21 method), 21
nonlinearmoco () (in module resolve () (regtricks.transforms.linearMotionCorrection
regtricks.multiplication), 23 method), 12
NonLinearMotionCorrection (class in resolve () (regtricks.transforms.linear.Registration
regtricks.transforms.nonlinear), 13 method), 13
36 Index

Regtricks, Release 0.3.6

resolve () (regtricks.transforms.nonlinear.NonLinearMotianCoxiextion (regtricks.image_space.ImageSpace at-

method), 14 tribute), 20, 22

resolve () (regtricks.transforms.nonlinear.NonLinearRegistration centres () (regtricks.image_space.ImageSpace
method), 15 method), 22

S W

save () (regtricks.transforms.transform.Transform wor1d2FSL (regtricks.image_space.ImageSpace at-
method), 16 tribute), 22

save_fsl () (regtricks.transforms.linear.MotionCorrectionor1d2vox (regtricks.image_space.ImageSpace at-
method), 12 tribute), 20, 22

save_fsl () (regtricks.transforms.linear.Registration write_affine () (in module regtricks.x5_interface),
method), 13 24

save_image () (regtricks.image_space.ImageSpace write_imagespace () (in module
method), 21 regtricks.x5_interface), 24

save_like () (regtricks.image_space.ImageSpace write_metadata () (in module
class method), 21 regtricks.x5_interface), 24

save_manager () (in module regtricks.x5_interface),
24 X

save_txt () (regtricks.transforms.linear.MotionCorrectiogsgrror, 23
method), 12

save_txt () (regtricks.transforms.linear.Registration
method), 13

size (regtricks.image_space.ImageSpace attribute), 20

src2ref (regtricks.transforms.linear.MotionCorrection
attribute), 12

src2ref (regtricks.transforms.linear.Registration at-
tribute), 13

src_load_helper () (in module
regtricks.application_helpers), 17
sum_array_blocks () (in module

regtricks.application_helpers), 17

T

to_flirt () (regtricks.transforms.linear.Registration
method), 13

to_£sl () (regtricks.transforms.linear.MotionCorrection
method), 12

to_fsl() (regtricks.transforms.linear.Registration
method), 13

touch () (regtricks.image_space.ImageSpace method),
21

Transform (class in regtricks.transforms.transform),
15

transform() (regtricks.image_space.ImageSpace
method), 21

transforms (regtricks.transforms.linear.MotionCorrection
attribute), 12

\Y

vox2FSL (regtricks.image_space.ImageSpace attribute),
22

vox2world (regtricks.image_space.ImageSpace at-
tribute), 20

Index 37

	Quickstart
	Loading or creating transformations
	Combining and applying transformations
	Working with ImageSpaces (voxel grids)

	FSL integration
	The FSL coordinate system

	Contributing
	regtricks
	regtricks package

	Index
	What is it?
	Why?
	Transformation, not interpolation
	Minimise interpolation

	How does it work?
	Transformations
	Image spaces
	Applying
	FSL Wrappers

	Python Module Index
	Index

